P(x)=40x^2+2080x-16000

Simple and best practice solution for P(x)=40x^2+2080x-16000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=40x^2+2080x-16000 equation:



(P)=40P^2+2080P-16000
We move all terms to the left:
(P)-(40P^2+2080P-16000)=0
We get rid of parentheses
-40P^2+P-2080P+16000=0
We add all the numbers together, and all the variables
-40P^2-2079P+16000=0
a = -40; b = -2079; c = +16000;
Δ = b2-4ac
Δ = -20792-4·(-40)·16000
Δ = 6882241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2079)-\sqrt{6882241}}{2*-40}=\frac{2079-\sqrt{6882241}}{-80} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2079)+\sqrt{6882241}}{2*-40}=\frac{2079+\sqrt{6882241}}{-80} $

See similar equations:

| x+x-8=100 | | 3x—8=x+4 | | x+(4x-13)+(20x-65)=1512 | | 40x3-12x2-72x=0 | | 93=27^x | | 21/3x-5=15/6x+1/3 | | 12x=3.5x+34 | | 76.03=y+70.18 | | 4^x-5=27 | | 6p-2=12 | | -4(x+7)-42=8-58 | | -4+x=6x-64 | | 5x+20+3x-6=2(4x-7) | | 3-(8x-5)+(6-7x)+3=7x | | 2/3x=12.4 | | 9=2f+3 | | 0.18a+0.4(10-a)=0.2(10) | | 0.23x=3800 | | 9x-(7x-3)=17 | | -7+4m+10=15=2m | | -4x=19-(-1) | | 20÷n=5 | | -(9x-34)+8(3x-7)-5(4x+11)=1/2(12x+44)-3/4(12x-8) | | -(9-34)+8(3x-7)-5(4x+11)=1/2(12x+44)-3/4(12x-8) | | 17-47=3(x-5)-3 | | x*0.23=3,800 | | -4(x+1)-16=14+2 | | -5=-3x+10 | | -35×16=f | | -9=n-19/3 | | X²+4x+8=10 | | -35-16=d |

Equations solver categories